

"Half of the precipitation used as drinking water and for hydroelectric power has its origin in mountain regions."

[Viviroli et al. 2007]

Mountains - The Water Towers of the World

Mountains over-proportionally provide runoff into the earths major rivers

[Viviroli et al. 2007]

Mountain Areas are Changing Rapidly

- 1. Kilometer-scale models are needed to simulate mountainous regions
- 2. The added value is in the processes
- 3. Observations can learn from kilometer-scale models

- 1. Kilometer-scale models are needed to simulate mountainous regions
- 2. The added value is in the processes
- 3. Observations can learn from kilometer-scale models

Deep convection in atmospheric models

Orographic Cold-Season Precipitation

Improved PR amount/patters in mountains

[Rasmussen et al. 2014; Prein et al. 2013]

- Better snow pack dynamics (build up and melt)
 [Rasmussen et al. 2014]
- Large benefits for hydrology, snow, glacier modeling
 [Rasmussen et al. 2014; Mölg, T. and G. Kaser 2011]

Simulating Convective Rainfall

Amount

[Mooney et al. 2016; Ban et al. 2015]

- 1. Kilometer-scale models are needed to simulate mountainous regions
- 2. The added value is in the processes
- 3. Observations can learn from kilometer-scale models

Grid-spacing Sensitivity of Heavy Mountain Precipitation

Cold Season

4- and 12-km are similar and outperform 36-km simulation

Warm Season 4-km is necessary to simulate heavy summertime events

Grid-spacing Sensitivity of Warm Season Rainfall

Bulk properties (e.g., precipitation) converged to 0.5 km model Precipitation structures are did not converge

SNOTEL vs WRF at SNOTEL sites: 13-year climatology

4 km model can realistically simulate snowpack dynamics

Snowpack will melt slower due to climate change

MCS in 3 atmospheric regimes

Date/Time: 0001-01-01_00:00:00

Date/Time: 0001-01-01 00:00:00

Example MCSs Features

CPM for "Climate" Simulations

"...convection in the regional model simulation tends to be locked to the mountains, while in the cloud-resolving simulations the convection moves with the upper level flow, producing precipitation maxima away from the mountain tops"

Grell et al. 2000; JGR

Changes in the Climate Change Signal

The regional models simulate an increase in precipitation over the high Alpine elevations that is not present in the global simulations. [Giorgi et al. 2016]

- 1. Kilometer-scale models are needed to simulate mountainous regions
- 2. The added value is in the processes
- 3. Observations can learn from kilometer-scale models

Global Density of Precipitation Gauges

Summer precipitation in the Alps (1989-2008)

Summer precipitation in the Alps (1989-2008)

Evaluating Models in Complex Terrain

Challenges and Opportunities

Improving the Water Cycle

http://www.filtersfast.com

Improving the Water Cycle

http://www.filtersfast.com

Improving the Water Cycle

http://www.filtersfast.com

Thank You

prein@ucar.edu

Model Evaluation in Mountainous Regions

Assessing Uncertainties

Select 1 GCM & 1 scenario to downscale a region over ~10-year period with one RCM

Assessing uncertainty is community effort and needs a framework

e.g., CORDEX-FPS

Dry & Warm Bias in CMIP5 GCMs

"For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America, and India" [Koster and Sud 2006]