A multidisciplinary approach for weather & climate

Land-atmosphere feedbacks in a high-resolution RCM: sensitivity to the land-surface forcing

Josipa Milovac^{1,2}

milovacj@unican.es

Klaus Görgen³, Jesús Fernández¹, Kirsten Warrach-Sagi², Álvaro Lavín Gullón⁴, Joachim Ingwersen², and Volker Wulfmeyer²

¹University of Cantabria, Santander, Spain; ²University of Hohenheim, Stuttgart, Germany;

³Research centre Juelich, Juelich, Germany; ⁴Institute of Physics, Santander, Spain

A multidisciplinary approach for weather & climate

Land-surface forcing

A multidisciplinary approach for weather & climate

Land-surface forcing

Milovac et al. 2014a Milovac et al. 2014b Contact person: Hans-Stefan Bauer, hans-stefan.bauer@uni-hohenheim.de

A multidisciplinary approach for weather & climate

Motivation

Milovac et al. 2014a Milovac et al. 2014b Contact person: Hans-Stefan Bauer, hans-stefan.bauer@uni-hohenheim.de

Santander Meteorology Group

A multidisciplinary approach for weather & climate

Objectives

SQ1:

Sensitivity of WRF to LS static data

SQ2:

Sensitivity of WRF to LS & BL sophistication

SQ3:

Sensitivity of WRF to season

Santander Meteorology Group

A multidisciplinary approach for weather & climate

SQ1:

Sensitivity of WRF to LS static data

4 simulations with various land surface forcing

- 1. CORINE-HWSD (CH)

 WRF-FPS setting
 - 2. CORINE-FAO (CF)
- 3. MODIS-HWSD (MH)
 - 4. MODIS-FAO (**MF**)

 WRF default setting

SQ2:

Sensitivity of WRF to LS & BL sophistication

2 WRF model configurations

- More sophisticated: MYNN PBL, NOAHMP LSM (UHOH)
 - 2. Less sophisticated: YSU PBL, NOAH LSM (FZJ)

Experimental design

SQ3:

Sensitivity of WRF to season

2 case studies

Coppola, E., Sobolowski, S., Pichelli, E. et al. Clim Dyn (2018)

1. **Summer case** (Austria, 1.6.-1.7.2009)

2. **Fall case** (Foehn, 1.10.-7.11.2014)

8-member ensemble for 2 case studies

Santander Meteorology Group

A multidisciplinary approach for weather & climate

Experimental domain

A multidisciplinary approach for weather & climate

Analysis approach

2 analysis regions

- ST region: Sensitivity to ST changes (79% grids change)
- LU region: Sensitivity to LU changes (77% grids change)

d02:3km

Sensitivity to LU changes

Sensitivity to ST changes

sophisticated:

NOAH+YSU)

A multidisciplinary approach for weather & climate

Diurnal cycles: Summer case

Diurnal cycles: Summer case

10

sophisticated:

NOAH+YSU)

A multidisciplinary approach for weather & climate

Diurnal cycles: Summer case

A multidisciplinary approach for weather & climate

Diurnal cycles: Fall case

LA feedbacks: Methodology

Mixing Diagram: Well mixed PBL can be represented with near surface humidity and temperature

LA feedbacks: Methodology

Mixing Diagram: Well mixed PBL can be represented with near surface humidity and temperature

Daily coevolution of moisture and heat

LA feedbacks: Methodology

Mixing Diagram: Well mixed PBL can be represented with near surface humidity and temperature

Mixing diagrams: Summer case

A multidisciplinary approach for weather & climate

Mixing diagrams: Summer case

Solid lines:

- Sensitivity to changes in ST evident (colors)
- Stronger PBL drying with FAO than with HWSD (line shapes)

Mixing diagrams: Summer case

Solid lines:

- Sensitivity to changes in ST evident (colors)
- Stronger PBL drying with FAO than with HWSD (line shapes)

Atmospheric vector V_{atm}:

 More atmospheric drying than surface moistening with FAO

Mixing diagrams: Summer case

Solid lines:

 Effects of the ST changes on PBL evolution in FZJ not as pronounced as in UHOH

A multidisciplinary approach for weather & climate

Mixing diagrams: Summer case

MODIS_FAO(WRF def.)

MODIS_HWSD

CORINE_FAO

CORINE_HWSD(FPS)

Solid lines:

 Effects of the LU change on the PBL evolution clearly evident in FZJ simulations.

Surface vector V_{sfc}:

 Strong moistening with CORINE in FZJ due to higher hfls than with MODIS

A multidisciplinary approach for weather & climate

Mixing diagrams: Fall case

Solid lines:

- Effects of the LU and ST changes not as evident as for the summer case
- FZJ more sensitive to LU changes than UHOH

Atmospheric vector V_{atm}:

 Atmospheric impact on the PBL evolution significantly larger than the impact from the surface

Santander Meteorology Group

A multidisciplinary approach for weather & climate

- Calculated from the morning profiles for the days without morning precipitation
- UHOH model configuration only

Convection indices: CTP

Convective triggering potential (CTP):

Measure of stability in lower atmosphere

Santander Meteorology Group

A multidisciplinary approach for weather & climate

- Calculated from the morning profiles for the days without morning precipitation
- **UHOH** model configuration only

Fall case

Convection indices: CTP

Convective triggering potential (CTP): Measure of stability in lower atmosphere

Evidently stronger impact of the land surface changes in the summer case

A multidisciplinary approach for weather & climate

Convection indices: HI_{low}

Humidity Index at low levels: $HI_{low} = (T_{950} - T_{d950}) + (T_{850} - T_{d850})$

- Calculated from the morning profiles for the days without morning precipitation
- UHOH model configuration only

A multidisciplinary approach for weather & climate

Convection indices: HI_{low}

Humidity Index at low levels: $HI_{low} = (T_{950} - T_{d950}) + (T_{850} - T_{d850})$

A multidisciplinary approach for weather & climate

Preliminary conclusions

2 LU maps

2 ST maps

2 WRF configs.

2 case studies

8 CP simulations for 2 cases ~1 month periods

Dry days (Mixing Diagram)

Convective indices (CTP,HI_{low})

SQ1: Sensitivity of WRF to land surface static data

- Evident impact of ST and LU changes on the model output: surface variables, PBL evolution, atmospheric stability and humidity in the lower atmosphere
- Strength of the sensitivity to a specific change depend on the model configuration

SQ2: Sensitivity of WRF to the configuration

 Less sophisticated FZJ (NOAH+YSU) configuration more sensitive to LU changes, and more sophisticated UHOH (NOAH-MP+MYNN) more sensitive to ST changes in representing PBL evolution

SQ3: Sensitivity of WRF to season

Sensitivity of WRF higher to the land surface changes in the summer case

Thank you for your attention

A multidisciplinary approach for weather & climate

Convection: CTP-HI_{low}

Calculated from early morning heat and moisture profiles

Findell, K.L. & E.A. Eltahir (2003), J. Hydrometeor., 4, 552–569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2

A multidisciplinary approach for weather & climate

Convection: CTP-HI_{low}

CTP-HI_{low} regimes:

1. Atmospherically controlled (Atm)

(Too stable to rain; too dry to rain; rain everywhere)

2. Dry soil advantage (DSA) – negative feedback

(rain favoured over dry soils)

3. Wet soil advantage(WTA) – positive feedback

(rain favoured over wet soils)

4. Transition regions (Trans)

(positive and negative feedbacks possible)

A multidisciplinary approach for weather & climate

d02:CTP-HI_{low}

-200

200

400

-200

CTP[J/kg]

200

400

Santander Meteorology Group

A multidisciplinary approach for weather & climate

Afternoon Precipitation

UHOH: MYNN + NOAH-MP

FZJ: YSU + NOAH

A multidisciplinary approach for weather & climate

Dry days

Surface forcing maps for the limited region:

RM₁

- Major changes: Croplands and Mixed Forest in MODIS into Permanent Wetlands and DB Forest in CORINE.
- 75% of clay-loam in FAO into 50% loam and 25%
 Sandy Loam in HWSD

Sensitivity to LS forcing

Averages for RM1 over 30-day period, 1.6.2009 - 1.7.2009

