A comparison of statistical downscaling techniques for daily precipitation: Results from the CORDEX Flagship Pilot Study in South America

Bettolli ML, Gutiérrez JM, Iturbide M, Baño-Medina J, Huth R, Solman S, Fernández J, da Rocha RP, Llopart M, Lavín-Gullón A, Coppola E, Chou S, Doyle M, Olmo M, Feijoo M.

Objective

to intercompare different statistical downscaling techniques in simulating daily precipitation in SESA with special focus on extremes.

Objective

to intercompare different statistical downscaling techniques in simulating daily precipitation in SESA with special focus on extremes.

- To evaluate the sensitivity to the reanalysis choice
- To evaluate the sensitivity to predictor variables

ESD Simulations

Approach:

Perfect Prognosis

Predictors:

ERA-Interim reanalysis

JRA reanalysis

Predictands:

Station Data (100): daily Pr, Tx and Tn MSWEP: daily Pr

Season:

October to March

Training and Test:

Cross validation k-folding strategy: 6 folds containing 5 consecutive years in
the period 1979-2009">https://example.com/html/>
the period 1979-2009
Independent Test period: 2009-2010

Generali	zed
linear mo	odel
(GLM)	

Analog Method (AN)

Method	Configuration	Predictor Variables
GLM_pc	PCs (95% variance)	Z500, V850, Z1000, Q700, Q850, T700, T850
GLM_pc.C	PCs Circulation Variables (95% variance)	Z500, V850, Z1000
GLM_I4	Local predictor values in the four nearest grid boxes.	Z500, V850, Z1000, Q700, Q850, T700, T850
GLM_ls	Combination of local and spatial predictors (PCs 90%Variance)	Local: Q850 Spatial: V850, Z500,Z1000
AN_pc	Nearest neighbor, PCs (95% variance)	Z500, V850, Z1000, Q700, Q850, T700, T850
AN_pc_C	Nearest neighbor, PCs Circulation Variables (95% variance)	Z500, V850, Z1000
AN_I16	Nearest neighbor, Local predictor values in the four nearest grid boxes.	Z500, V850, Z1000, Q700, Q850, T700, T850

Ge	ner	aliz	ed
line	ar r	no	del
(GL	M)		
			,

Analog Method (AN)

Method	Configuration	Predictor Variables
GLM_pc	PCs (95% variance)	Z500, V850, Z1000, Q700, Q850, T700, T850
GLM_pc.C	PCs Circulation Variables (95% variance)	Z500, V850, Z1000
GLM_I4	Local predictor values in the four nearest grid boxes.	Z500, V850, Z1000, Q700, Q850, T700, T850
GLM_Is	Combination of local and spatial predictors (PCs 90%Variance)	Local: Q850 Spatial: V850, Z500,Z1000
AN_pc	Nearest neighbor, PCs (95% variance)	Z500, V850, Z1000, Q700, Q850, T700, T850
AN_pc_C	Nearest neighbor, PCs Circulation Variables (95% variance)	Z500, V850, Z1000
AN_I16	Nearest neighbor, Local predictor values in the four nearest grid boxes.	Z500, V850, Z1000, Q700, Q850, T700, T850

Generalized linear model (GLM)

Analog Method (AN)

Method	Configuration	Predictor Variables	
GLM_pc	PCs (95% variance)	Z500, V850, Z1000, Q700, Q850, T700, T850	
GLM_pc.C	PCs Circulation Variables (95% variance)	Z500, V850, Z1000	
GLM_I4	Local predictor values in the four nearest grid boxes.	Z500, V850, Z1000, Q700, Q850, T700, T850	
GLM_ls	Combination of local and spatial predictors (PCs 90%Variance)	Local: Q850 Spatial: V850, Z500,Z1000	
AN_pc	Nearest neighbor, PCs (95% variance)	Z500, V850, Z1000, Q700, Q850, T700, T850	
AN_pc_C	Vari collaboration between	Buenos Aires and the University of	
AN_I16	valu Cantabria (Climate4R)		

ERA-I JRA Warm Season 2009/10 Raw data: Underestimate

GLM: overestimate

AN: OK

2009/10: considerable spread

Wet Day Intensity

Wet Day Intensity

1979-2009

Even tough the GLM tended to overestimated the values, they are able to reproduce the spatial behavior of the wet day intensity.

Wet Day Frequency

ERA-I JRA Warm Season 2009/10

1979-2009

Raw data: Overestimation

GLM: OK

AN: Spatial spread in performances

2009/10: considerable spread

Wet Day Frequency

ERA-I 2009/10 JRA 1979-2009

Warm Season

Wet Day Frequency

Raw data: Overestimation

GLM: OK

AN: Spatial spread in performances

2009/10: considerable spread

Except for the AN that considers the

full set of predictor variables

GLM: performs best

Results

Daily Temporal Correlation

ERA-I
JRA Warm Season
2009/10

GLM: performs best **2009/10:** some differences depending on the reanalysis choice and the predictor set are evident.

Daily Temporal Correlation

All methods show similar performances but **GLM:** present more spread

Raw data and GLM: underestimate

the P98

AN: perform best

Relative Bias

Concluding remarks

- The results show that the methods are generally more skillful when combined predictors including temperature and humidity at low levels of the atmosphere are considered.
- The performance of the models is also sensitive to reanalysis choice.
- The methods show overall good performance in simulating daily precipitation characteristics over the region, but no single model performs best over all validation metrics and aspects evaluated.

Thanks!