Frequency of extreme El Niño and La Niña events under global warming

Omid Alizadeh-Choobari, Sajedeh Marjani, Parviz Irannejad

Institute of Geophysics, University of Tehran (omid.alizadeh@ut.ac.ir)

ICRC-CRDEX 2019 14-18 October 2019, Beijing, China

Introduction

ENSO is a quasi-periodical natural phenomenon occurring in the tropical Pacific

Introduction

Boreal winter SST and rainfall for (a, b) 12 neutral phases, (c, d) two very strong La Niña in 1988-89 and 1998-99 and (e, f) three very strong El Niño in 1982-83, 1997-98 and 2015-16.

Motivation

Does global warming affect characteristics of ENSO?

- Most very strong El Niño events occurred during the past half century, in 1982-83, 1997-98 and 2015-16
- Most strong La Niña events also occurred in recent decades, in 1988-89, 1998-99, 1999-2000, 2007-08 and 2010-11

Methodology

The number of very strong ENSO events in the future period (2050-2099) under the RCP4.5 and RCP8.5 scenarios relative to that in the historical period (1950-1999) is analyzed using outputs of 14 GCMs participating in CMIP5

Models	Institute	Atmospheric grid (°)		Oceanic grid (°)	
		Latitude	Longitude	Latitude	Longitude
bcc-csm1-1	Beijing Climate Center, China Meteorological Administration	2.7906	2.8125	0.33331, 1	1.0
bcc-csm1-1-m	Beijing Climate Center, China Meteorological Administration	2.7906	2.8125	0.33331, 1	1.0
CanESM2	Canadian Centre for Climate Modelling and Analysis	2.7906	2.8125	0.9303, 1.1407	1.40625
CESM1-BGC	National Science Foundation, Department of Energy, National Center for Atmospheric Research	0.9424	1.25	lat (i, j)	lon (i, j)
CESM1-CAM5	National Science Foundation, Department of Energy, National Center for Atmospheric Research	0.9424	1.25	lat (i, j)	lon (i, j)
GFDL-CM3	Geophysical Fluid Dynamics Laboratory	2.0	2.5	0.33441, 1	1.0
GFDL-ESM2M	Geophysical Fluid Dynamics Laboratory	2.0	2.5	0.33441, 1	1.0
GISS-E2-H	NASA Goddard Institute for Space Studies	2.0	2.5	2.0	2.5
HadGEM2-CC	Met Office Hadley Centre (additional HadGEM2-ES realizations contrib- uted by Instituto Nacional de Pesquisas Espaciais)	1.25	1.875	0.33961, 1	1.0
IPSL-CM5B-LR	Institut Pierre-Simon Laplace	1.8947	3.75	lat (i, j)	lon (i, j)
MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology	1.4008	1.40625	0.5, 0.5	1.40625
MPI-ESM-MR	Max Planck Institute for Meteorology (MPI-M)	1.8653	1.875	lat (i, j)	lon (i, j)
MRI-CGCM3	Meteorological Research Institute	1.12148	1.125	0.5, 0.5	1.0
NorESM1-M	Norwegian Climate Centre	1.8947	2.5	lat (i, j)	lon (i, j)

Methodology

The Oceanic Niño Index (**ONI**) is used to identify ENSO events, a three-month central running means of SST anomalies in the Niño 3.4 region (5°S-5°N, 170°-120°W) relative to a centered 30-year climatology

If the ONI for at least 5 consecutive months become equal or greater (smaller) than 0.5 (-0.5), an El Niño (a La Niña) is diagnosed

0.5≤ ONI <0.9: weak El Niño

1.0≤ ONI <1.4: moderate El Niño

1.5≤ ONI <1.9: strong El Niño

2.0≤ ONI: very strong El Niño

(should be valid for at least three consecutive months)

-0.9≤ ONI <-0.5: weak La Niña

-1.4≤ ONI <-1.0: moderate La Niña

-1.5≤ ONI <-1.9: strong La Niña

ONI ≤-2.0: very strong La Niña

Boreal winter SST values (°C) based on ensemble of 14 GCMs in the future period (2050-2099) minus those in the historical period (1950-1999)

- Eastern equatorial Pacific warms at a faster rate than western equatorial Pacific (an El Niño-like pattern)
- Zonal SST gradient across the equatorial Pacific is weakened; thus easterly trade winds will be weakened

Boreal winter mean rainfall values (mm day⁻¹) based on ensemble of 14 GCMs in the future period (2050-2099) minus those in the historical period (1950-1999)

• The convective zone may shift to central and eastern equatorial Pacific in boreal winter under global warming

Results

The number of El Niño events based on ensemble of 14 GCMs in the historical (1950-1999) and future (2050-2099) periods

Total El Niño events: RCP4.5: +2% **RCP8.5:** +16%

A slight increase in the number of very strong El Niño (10 & 18 % for RCP4.5 & RCP8.5, respectively)

Results

The number of La Niña events based on ensemble of 14 GCMs in the historical (1950-1999) and future (2050-2099) periods

Total La Niña events: RCP4.5: +2% RCP8.5: -5%

A greater increase in the number of very strong La Niña (38 & 35 % for RCP4.5 & RCP8.5, respectively)

Conclusions

- Eastern equatorial Pacific warms at a faster rate than western equatorial Pacific under global warming
- Zonal SST gradient and thus easterly trade winds weaken across the equatorial Pacific under global warming
- The convective zone may shift to central and eastern equatorial Pacific in boreal winter under global warming
- A slight increase in the number of very strong El Niño (10 & 18 % for RCP4.5 & RCP8.5) is predicted in the second half of the 21st century
- A greater increase in the number of very strong La Niña (38 & 35 % for RCP4.5 & RCP8.5) is predicted compared to the number of very strong El Niño

Marjani S, **Alizadeh-Choobari O**, Irannejad P (2019) Frequency of extreme El Niño and La Niña events under global warming. *Climate Dynamics*, in press. http://dx.doi.org/10.1007/s00382-019-04902-1

Thanks for your attention

(a, b) Based on the Cai index, (c, d) based on the modified Cai index