

Past and Future snow conditions in Europe calculated by the EURO-CORDEX regional climate model ensemble

Claas Teichmann¹, Katharina Bülow¹, Sven Kotlarski², Christian R. Steger³

¹Climate Service Center Germany (GERICS), Hamburg, Germany

²Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland

³Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

October 2019

The future evolution of snow is relevent.....

- Future snow projections are relevant for numerous sectors:
 - Important natural water resource:
 hydropower, water supply ...Water management
 - Agriculture (length of snow cover)
 - Ecology
 - High importance for tourism and recreation in many regions
 - Road maintenance
 - Surface energy balance (e.g. snow-albedo feedback)
- Validierung 1989-2008:

Assess the ability of state of the art RCMs to reproduce observed snow cover

Analysis of 21st century RCM snow cover projections

Simulations, variables and European analysis domain

- **EURO-CORDEX** RCM ensemble at 12 km resolution EUR-11: Reanalysis- and GCM-driven simulations
- Variable: surface snow water equivalent (SWE) and snow depth (SND) (if not available: surface snow depth; conversion by constant density rough estimate of 333 Kg/m³)
- Snow cover day has the threshold of 3 cm snow depth
- European analysis domain with focus on Scandinavia and Alps

Area	West	East	South	North	
1 (BI) British Isles	-10	2	50	59	
2 (IP) Iberian Peninsula	-10	3	36	44	
3 (FR) France	-5	5	44	50	
4 (ME) Mid-Europe	2	16	48	55	
5 (SC) Scandinavia	5	30	55	70	
6 (AL) Alps	5	15	44	48	
7 (MD) Mediterranean	3	25	36	44	
8 (EA) Eastern Europe	16	30	44	55	

Evaluation

- 10 ERA-Interim driven EURO-CORDEX RCMs: ALADIN, CLM, HIRHAM, RACMO, RCA4, RegCM, REMO, WRF
- Datasets: ERA5, GLDAS, UERRA-MESCAN, NSIDC

Mean snow cover duration 1989 - 2008

Differences in representation of present day snow cover duration

Alps: Snow cover extent [%] 1998 -2008

Scandinavia: Snow cover extent [%] 1998 -2008

1989-2008 Temperature and precipitation bias of individual RCMs compared to EOBS (November-April)

1989-2008 Temperature and precipitation bias of individual RCMs compared to EOBS (November-April)

Geesthacht

1989-2008 Temperature and precipitation bias of individual RCMs compared to EOBS (November-April)

Geesthacht Centre for Materials and Coastal Research

Climate Scenario Simulations

Climate scenario simulations

RCM 9

GCM

12

GCM/RCM (realisation)	RCA	CLM	REMO	RACMO	HIRAM	Aladin63	RegCM
CanESM2 (r1)	, ,	, , X	, , X	, ,	, ,	, ,	, ,
CNRM-CM5 (r1)	, ,	, ,	, ,	X, , X	, , X	, , X	, ,
GFDL-ESM2G (r1)	, ,	, ,	X, ,	, ,	, ,	, ,	, ,
HadGEM2-ES (r1)	X , X , X	, X , X	X, , X	X , X , X	, , X	, ,	, ,
EC-EARTH (r1)	, ,	, ,	, ,	, X , X	, , X	, ,	, ,
EC-EARTH (r3)	, , X	, ,	, ,	, , X	X , X , X	, ,	, ,
EC-EARTH (r12)	X , X , X	X,X,X	X, , X	X , X , X	, , X	, ,	, ,
MIROC5 (r1)	, ,	X, , X	X, X	, ,	, ,	, ,	, ,
MPI-ESM-LR (r1)	X , X , X	X , X , X	X , X , X	, ,	, ,	, ,	, ,
MPI-ESM-LR (r2)	, ,	, ,	X , X , X	, ,	, ,	, ,	, ,
MPI-ESM-LR (r3)	, ,	, ,	, , X	, ,	, ,	, ,	, ,
NorESM (r1)	X, , X	, ,	X, , X	, , X	, X , X	, ,	, ,
IPSL-CM5A-MR (r1)	, X , X	, ,	1 1	1 1	, ,	, ,	, ,
IPSL-CM5A-LR (r1)	, ,	, ,	X, , ,	, ,	, ,	, ,	, ,

Climate scenario simulations

Study Focus Regions

Scandinavia

Alps

Alps: Historical snow cover extent [%] 1989-2008 (snow day=3 cm snd)

Snow water equivalent [mm] 1971-2000 (November-April)

Snow water equivalent [mm] 2021-2050 (November-April)

Snow water equivalent [mm] 2070-2099 (November-April)

Snow water equivalent: relative change to 1971-2000 [%]

Snow water equivalent: relative change to 1971-2000 [%]

Snow water equivalent: relative change to 1971-2000 [%]

numbers:

Annual cycle of snow water equivalent [mm] Alps 1500-2000 m, RCP8.5

Annual cycle of snow water equivalent [mm] Scandinavia 500-1000 m, RCP8.5

Summary and outlook:

- RCM-simulated snow cover is overall realistic.
- Climate scenarios indicate **important reduction of European snow cover** by end of 21st Century, even for RCP2.6
- Scandinavia/Alps: **strong loss (55%-90%)** at low elevations for RCP8.5
- Scandinavia/Alps: strong reduction of now cover duration at low elevations for RCP8.5

- Snow atmosphere feedbacks
- Complete study of climate scenario simulations

Mean snow cover duration 1998 -2008

NORESMr1-REMO2015_rcp85 NORESMr1-RCA_rcp85 MPIr2-REMO rcp85 MPIr1-REMO_rcp85 MPIr1-RCA rcp85 MPIrt-CLM rcp85 MIROCri REMO2015 rcp85 MIROCr1 CLM rcp85 IPSLr1-RCA_rcp85 HADGEMr1-REMO2015 rcp85 HADGEMr1-RCA_rcp85 HADGEMr1-HIRHAM_rcp85 HADGEMr1-CLM_rcp85 ECEARTHr1-HIRHAM_rcp85 ECEARTHr12-REMO2015_rcp85 ECEARTHr12-RCA rcp85 ECEARTHr12-HIRHAM rcp85 ECEARTHr12-CLM_rcp85 CANESMr1-REMO2015_rcp85 CANESMr1-CLM_rcp85

