

Quantifying the evolution of agriculture impact on climate in Europe by regional climate model simulations

Bo Huang

13.11.19

Francesco Cherubini, Xiangping Hu, Geir-Arne Fuglstad, Xu Zhou, Wenwu Zhao

International Conference on Regional Climate-CORDEX 2019 Beijing

Pasture/crop lands change from 1800 to 2000

Biophysical and biogeochemical effects of land cover change

LE: Latent heat; SH: Sensible heat

Warming Europe by Cropland reduction

Annual mean precipitation changes

Data and model simulations

> Data

- European Space Agency (ESA) Climate Change Initiatiue (CCI) land cover 2015
- E-OBS observation
- Duveiller et al., 2018 *Sci Data*

> Model simulation

- WRF v3.9.1
- Driven data: ERA-Interim
- Horizontal resolution: 0.11° (~12km)
- Three simulations:
 - Land cover 1992 (LCI),
 - Land cover 2015 (LCII), and
 - No Cropland abandonment (LCIII)

> Decomposition method

Agriculture area transition in Europe

Cropland change from 1992 to 2015

Climate change due to land cover change

Seasonal climate change

Land cover II – Land cover I

2m Temperature

No Land Cover transition from Cropland

Decomposition of temperature change

Temperature change caused by land cover transition from cropland

Comparison of the decomposed temperature

ENF: evergreen needleleaf forest

DBF: Deciduous Broadleaf forest

OSL: Open shrublands

GRL: Grassland

