

Hiroaki Kawase

(Meteorological Research Institute, Japan Meteorological Agency, Japan)

Takeshi Yamazaki, Takahiro Sasai, (Tohoku Univ.), Shiori Sugimoto, Mikiko Fujita (JAMSTEC), Akihiko Murata, Hidetaka Sasaki, Nasaya Nosaka (MRI)

Introduction

Japan has many mountains. About 75% of whole Japan is mountainous areas.

Mountain ranges in the central Japan are called as <u>Japan's Alps</u>, which is named after European Alps.

<u>Japan's Northern Alps</u> has enormous snow cover.

Mechanism of heavy snowfall in Japan

Similar to the lake effect in snowfall of the Great Lakes

Introduction

Impact of global warming on the Japanese snow

- East Asian Winter Monsoon will weaken due to global warming, resulting in a decrease in winter precipitation along the Sea of Japan side.

 [Hu et al. 2000; Kimoto et al. 2005; Hori and Ueda 2006]
- ➤ Weakening winter monsoon and temperature rise will reduce total snowfall in Japan, especially lower elevations.

[Hara et al. 2008; JMA* 2017; Kawase et al., 2015]

Over the Colorado Headwaters region, global warming enhanced snow melting at lower-elevations, while increased snowfall at higher elevations.

[Rasmussen et al., 2011; 2014]

In Europe and the U.S., large reductions in extreme snowfalls are projected due to global warming, except for the coldest areas such as the European Alps and the Rocky Mountains

[de Vries et al. 2014; Lute et al. 2015]

Introduction

Impact of global warming on the Japanese snow

- East Asian Winter Monsoon will weaken due to global warming, resulting in a decrease in winter precipitation along the Sea of Japan side.

 [Hu et al. 2000; Kimoto et al. 2005; Hori and Ueda 2006]
- ➤ Weakening winter monsoon and temperature rise will reduce total snowfall in Japan, especially lower elevations.

[Hara et al. 2008; JMA* 2017; Kawase et al., 2015]

Purpose

To evaluate the impact of global warming on winter snowfall and snow cover at high elevations of Japan's Alps using the regional climate model with 1 km grid spacing.

d4PDF

(Database for Policy Decision making for Future climate change)

Global climate experiments (MRI-AGCM3) 60km

- O Historical experiments (60yrs, 100 member) 6000 years SST: COBE-SST2 1951~2010 (with 100 initial perturbations)
- O Future experiments (60yrs, 90/54 member) 5400/3240 years

 SST: Historical SST plus six SST anomalies of CMIP5 models between past

 and future climate assuming 2K/4K warming (RCP8.5)

 relative to preindustrial period.

 Global mean surface air temperature

Regional climate experiments (NHRCM with 20km)

NHRCM is Nonhydrostatic Regional Climate Model developed by MRI, JAPAN.

Topography in RCMs

Realistic Japan's Alps

Additional downscaling and selection of years

NHRCM with 5km ~400yrs.

* **Historical**: <u>372 years</u> (31 years x 12)

* **2K warming:** <u>372 years</u> (31 years x 12)

* **4K warming**: <u>372 years</u> (31 yeas x 12)

Calculation of annual maximum snow cover at Japan's Alps above 1,000m in each climate

Selection and dynamical downscaling

Top 5 years: **Heavy snow**-covered years

Median 5 years: Medium snow-covered years

Bottom 5 years: Light snow-covered years

(15 yrs. x 3 clim.) **Downscaling using 1km NHRCM**

Seasonal variation of snow depth over Northern Alps

2K warming

4K warming

Light Snow-covered years

over 2000m

Historical

High elevation

above 2000m

Target

Targe

Heavy snow-covered years

6-7m

Mid-winter snow depths under 2K/4K warming experiments are comparable to snow depth in the historical experiment.

138E

■ Light snow-covered years

Snow depth will decrease even in mid-winter due to global warming.

The difference of snow cover between heavy and light snow-covered years gets larger due to global warming.

Seasonal variation of half-monthly snowfall

Snowfall over 2000 m ASL

Light Snow-covered years

Increase in mid-winter snowfall due to global warming

→ Similar snow depth in the three experiments.

Decrease in mid-winter snowfall due to global warming

Seasonal variation of SST, air temperature, and snowfall

Heavy snow-covered years (high elevation>2000m)

Surface wind (synoptic condition) and precipitation

Historical exp. (5-year-mean) [DJF]

Surface wind (synoptic condition) and precipitation

4K warming exp. – Historical exp. [DJF] (5-year-mean)

Summary

We evaluated future changes in snowfall and snow cover at high elevations of the Japan's Northern Alps using a regional climate model with 1 km grid-spacing.

- In heavy snow-covered years, mid-winter snowfall increases at high elevations of Japan's Northern Alps due to global warming. Mid-winter snow depth is comparable to present one in the 4 K warming climate.
- In light snow-covered years, mid-winter snow cover largely decreases due to global warming.
- A contrast of mid-winter snow cover between heavy and light snow-covered years gets larger due to global warming.
- Changes in synoptic condition are different between the heavy snow-covered years and medium snow-covered year.

Additional downscaling and selection of years

NHRCM with 5km ~400yrs.

* **Historical**: <u>372 years</u> (31 years x 12)

* **2K warming:** <u>372 years</u> (31 years x 12)

* **4K warming**: <u>372 years</u> (31 yeas x 12)

Physical processes in 1km NHRCM

Microphysics Bulk-type cloud microphysics (Ikawa et al.1991)

Radiation Clear-sky radiation scheme (Yabu et al. 2005)

Cloud radiation scheme (Kitagawa et al. 2000)

Boundary-layer Improved Mellor-Yamada-Nakanishi-Niino (MYNN) Level 3

(Nakanishi and Niino 2004)

Land surface Improved MRI/JMA Simple Biosphere (iSiB) (Hirai and Oh'izumi 2004)

Urban model

Square Prism Urban Canopy Scheme (SPUC) with snow cover process

(Aoyagi and Seino 2011; Ito et al. 2018)

Future changes in precipitation and synoptic circulation

Many mountainous areas in Japan

Japan has many mountains. About 75% of whole Japan is mountainous areas.

Mountain ranges in the central Japan are called as <u>Japan's Alps</u>, which is named after European Alps.

Japan's Northern Alps has enormous snow cover.

Future changes in daily snowfall intensity

Heavy snow-covered years

High-elevations

- Weak daily snowfall decreases.
- Heavy daily snowfall over about 50 cm/day occurs more frequently under 4K warming.

Low-elevations

- Under 4K warming, daily snowfall frequency decreases in all range of snowfall intensity.
- Heavy snowfall over 40 cm/day increases under 2K warming.

Seasonal variation of half-monthly snowfall and rainfall

Future changes in extremely heavy daily snowfall

Many mountainous areas in Japan

→ Mechanism of snowfall in Japan

Specification of NHRCM01

Physical processes in NHRCM01

Microphysics Bulk-type cloud microphysics (Ikawa et al.1991)

Radiation Clear-sky radiation scheme (Yabu et al. 2005)

Cloud radiation scheme (Kitagawa et al. 2000)

Boundary-layer Improved Mellor-Yamada-Nakanishi-Niino (MYNN) Level 3

(Nakanishi and Niino 2004)

Land surface Improved MRI/JMA Simple Biosphere (iSiB) (Hirai and Oh'izumi 2004)

Urban model

Square Prism Urban Canopy Scheme (SPUC) with snow cover process

(Aoyagi and Seino 2011; Ito et al. 2018)

Seasonal variation of SST, air temperature, and snowfall

Social Implementation Program on Climate Change Adaptation Technology

SI-CAT contributes to the development of adaptation plans by local governments and the creation of new enterprises, in consideration of the steady adaptation of various needs to climate change.

Future changes in synoptic circulation

Heavy snow-covered years (composite)

Future Change in DJF surface wind and precipitation under +4K climate

Why increase? Composites of top 50 heavy snowfall events

Precipitation(snowfall+rainfall) and surface wind

JPCZ: Japan sea Polar air mass Convergence Zone

Why increase? Composites of top 50 heavy snowfall events

Precipitation(snowfall+rainfall) and surface wind

Mean vertical wind and differences Future exp. — Historical exp.

Enhancement of JPCZ (convergence)

Why increase? Composites of top 50 heavy snowfall events

Precipitation(snowfall+rainfall) and surface wind

Mean vertical wind and differences Future exp. — Historical exp.

Enhancement of JPCZ (convergence)

Similar to the lake effect in snowfall of the Great Lakes

日本海側の山沿いで大雪が増える理由

15-year-mean annual maximum snow depth

Future changes in 15-year-mean maximum snow depth

