

Effects of Planetary Boundary Layer Parameterizations on High Resolution Regional Climate Simulation over Tibetan Plateau

Jianping Tang, Peifeng Zhou, Gang Liu School of Atmospheric Sciences, Nanjing University

Outline

- > Motivation
- > Sensitivity of PBL parameterizations
- > Evaluation of high resolution simulation
- > Summary

Motivation

Planetary Boundary Layer: part of the troposphere that is directly influenced by the presence of the earth's surface

Tibetan Plateau : Complex topography an average altitude of over 4000m

(Serafin et al., 2019, TEAMx)

- > Over mountainous terrain, exchange processes include turbulent mixing, breeze systems, gravity wave propagation and moist convection.
- ➤ Vertical transport towards the free atmosphere is conjectured to be on average more intense over mountains
- The high altitude complex terrain influence of TP on the atmosphere is closely related to its PBL

Sensitivity of PBL parameterizations on regional climate simulations over TP

What are the performances of RCM simulations over TP with different PBLs ?

Model Domain and Experiments Design

Model Domain (9km resolution)

1000 2000 3000 4000 5000 6000 7000

Normalized time series of stations' average summer precipitation of TP(Wang et al. 2017)

Simulation periods: May 16- Sep 1 1998 (Wet), 2006 (Dry)

Model Configuration		
Model prototype	WRF 4.0	
Governing equations	Nonhydrostatic	
Grids and resolution	531x361, <mark>9km</mark>	
Vertical Layers (top)	40 P-Sigma layers (50hPa)	
Cumulus convection	Grell 3D ensemble	
Explicit moisture	Thompson	
Radiation	RRTMG	
Land Surface	NOAH-MP LSM	

PBL Schemes

- (1) YSU (CTL)
- (2) Mellor-Yamada-Janjic TKE
- (3) MYNN 2.5 level TKE
- (4) Bougeault and Lacarrere PBL
- (5) UW PBL from CAM5
- (6) Shin-Hong 'scale-aware' PBL
- (7) Grenier-Bretherton-McCaa

1998 JJA precipitation

WRF clearly overestimate JJA precipitation, differences exist between different PBL experiments.

2006 JJA precipitation

The difference of JJA precipitation between 1998 and 2006

WRF reproduced the differences of JJA precipitation between wet and dry year

Taylor diagram of spatial patterns of JJA precipitation

- All experiments simulate the distributions of JJA precipitation with Corr at about 0.6-0.7, but obviously enlarge the spatial variability
- > MYNN2.5 shows best performance compare to the other PBLs

Variations of daily precipitation and surface air temperature

Region II : Central East of TP

Wet and cold biases exist over central east of TP

Taylor diagram of temporal variation of daily precipitation

Variations of daily PBL height

The variations of PBLH are quite similar, MYNN2.5 shows highest PBLH

- Evaluate the profiles of relative humidity to see the influence of PBLs
- The three stations are chosen over TP region

Vertical profile (relative humidity)

Conclusion

- WRF can simulate the difference of JJA precipitation between 1998 and 2006, but it clearly overestimate the JJA precipitation especially in dry year over TP.
- Obvious differences of PBL height can be found in WRF simulations with different PBL schemes.
- The overestimation of low level moisture is associated with the overestimation of precipitation.

Evaluation of high resolution decadal regional climate simulation over TP

Experiment Design

Validation Dataset:

Daily precipitation and surface air temperature from APHRODITE aphrodite.st.hirosaki-u.ac.jp

Model Configuration		
Model prototype	WRF 4.1.1	
Governing equations	Nonhydrostatic	
Grids and resolution	531x361, 9km	
Vertical Layers (top)	40 P-Sigma layers (50hPa)	
Cumulus convection	NONE	
Explicit moisture	Thompson	
Planetary Boundary Layer	MYNN 2.5 level	
Radiation	RRTMG	
Land Surface	NOAH-MP LSM	
Spectral Nudging	Yes	
Driving	ERA5 3hr	
Simulation Period	2000-2009 Continue Run	

Mean Precipitation

Wet bias

Mean Surface Air Temperature

Cold Bias

Variation of Pr and T2m over Eastern TP

Variation of Pr and T2m over Western TP

Taylor Diagram of temporal variations of precipitation and surface air temperature

Red: Eastern TP Blue: Western TP

Seasonal Cycle

Surface wind over complex terrain

WRF with high resolution can reproduce the surface wind induced by complex topography

Summary

- The WRF simulation without convection scheme at grayzone grid can well reproduce the spatiotemporal variations of annual mean precipitation and surface air temperature over Tibetan Plateau.
- Compare to the APHRO grid datasets, WRF tend to overestimate the precipitation and underestimate the temperature in winter.
- Larger positive biases of precipitation exist over eastern TP, while larger colder biases of temperature exist over western TP.

Thank you!

Vertical profile (wind speed)

Total Wind Speed(year 1998)

Total Wind Speed(year 2006)

 $\begin{tabular}{ll} Table\ 2\\ Overview\ of\ the\ PBL\ parameterization\ schemes\ used\ in\ this\ study. \end{tabular}$

Scheme	Closure type	Boundary layer height definition
YSU (Hong et al., 2006)	1.0 order nonlocal	R _{ib} method (0 for stable, 0.25 for unstable)
MYJ (Janjić, 2002)	1.5 order local	TKE threshold (0.2 m ² s ⁻²)
MYNN3 (Nakanishi and Niino, 2004)	2 order local	TKE threshold $(1.0 \times 10^{-6} \text{m}^2 \text{s}^{-2})$
BouLac (Bougeault and Lacarrère, 1989)	1.5 order local	TKE threshold $(5.0 \times 10^{-3} \text{m}^2 \text{s}^{-2})$
GBM (Grenier and Bretherton, 2001)	1.5 order local	Prognosed from three entrainment closure approach
ACM2 (Pleim, 2007)	1.0 order nonlocal	R _{ib} method (0.25)
UW (Bretherton and Park, 2009)	1.5 order local	R _{ib} method (0.25)
SHIN-HONG (Shin and Hong, 2011)	1.0 order nonlocal	R _{ib} method (0)

(Xu et al., 2019)