Results of a new methodology for the analyze the climate change uncertainty on a high step mountain range. Application at the Andes

A methodology with independence of model resolution and following criteria

L. Fita 1,3 , A. F. Carril 1,3 , P. Flombaum 1,3,4 , C. Menéndez 1,2,3 , R. Ruscica 1,3 , A. Sörensson 1,3 , P. Zaninelli 1,3,5

1 Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET-UBA, C. A. Buenos Aires, Argentina

² Departamento de Ciencias de la Atmósfera y los Océanos (DCAO), UBA - FCEyN, C. A. Buenos Aires, Argentina

³ Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (IFAECI), CNRS UMI-3351, C. A. Buenos Aires, Argentina

⁴ Departamento de Ecología, Genética y Evolución (DEGE), FCEyN-UBA, C.A. Buenos Aires, Argentina

⁵ Facultad de Ciencias Astrónomicas y Geofísicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina

Currently

- Space averaging: comparison of different data-sets by spatial averaging over areas
- Definition of spatial areas different possibilities:

lon, lat boxes: artificial 'mathematical' boundaries [Christensen, 2007, Climatic Change]

orography: river
basins [Herrera, 2010, J.
Geophys. Res.]

<u>climate</u>: climate coherence of regions [Fita, 2016, Clim. Dyn.]

- Following only one criteria
- **spatial incoherence** mixture of: different climates, atmospheric-dynamics, morphological characteristics...

Circulation patterns over South America

Climate in South America dominated by Andes mountain range, with tropical precipitation North, and storm tracks South

Proposal

- Reduction of spatial incoherence: definition of regions using combination of different objective criteria
- Example on Andes study (3 criteria):
 - 1 latitudinal bands: climate coherence
 - orographic height: climate coherence
 - **mountain range face**: atmospheric-dynamics coherence
- Simultaneous application of 3 criteria to define spatial regions to spatially average model output
- Definitions:
 - <u>criteria</u>: definition of categories to select grid points
 - slice: union of criteria
- spatial average: spatial weighted average by areal overlapping of slice (as a polygon) and model grid cell (as lon, lat box)

Polygonal overlapping area

- Polygonal area overlapping: grid selection by spatial criteria.
- e.g. slice: SESA area
- \forall grid cell ((i,j)) area (\mathcal{P}_g) within slice (\mathcal{P}_S) :

Overlaping of polygons: individual grid cells and slice. Take cell fractions

spatial averaging weights for grid cell as covered fraction of the total area of the slice $w_g = \frac{A_g^g}{4c}$

1st criteria: Latitudinal bands

- General climate latitudinal dependence (dist. from Equator & Poles)
- South American climate N-S bands:

[Kottek, 2006, Meteorol. Z.]

criteria: bands of latitude, from S 63.° to N 19."° every 2.° [41 categories]

2nd criteria: Topographical height

- Climate dependence on topographical height
- South American orography:

(3 km resolution)

criteria: height ranges of orography from 500. to 7000. m every 500. m [13 categories]

Topographycal representation CMIP5 models

■ Challenge: results using CMIP5 data at various poor resolutions

Loss of main peaks
Differences about 2000 m

3rd criteria: mountain face

- Atmospheric dynamics dependence on wind/lee-ward side of the Andes mountain range
- Use new diagnostic rangefaces to define west, peak and east regions along a mountain range
- South American 'rangefaces':

2 uphill
1 uphill valley
0 peak
-1 downhill valley
-2 downhill

- (3 km resolution)
- Use only Andes range (single 'range' value)
- criteria: grid point 'uphill', 'peak' or 'downhill' [3 categories]

rangefaces: mountain range face diagnostics

- Grid point side along longitudinal/meridional sections. e.g. Andes: latitudinal sections
 - range: grid point as part of a mountain range if it is above 400 m (topo_{min})
 - West/East: 'x' derivative of the topography: West (uphill, [2]), East (downhill, [-2])

$$\partial_{x} topo(i,j) = \frac{topo(i+1,j)-topo(i,j)}{\delta_{x}} \left\{ \begin{array}{ll} > 0. & uphill \ (2) \\ < 0. & downhill \ (-2) \end{array} \right.$$

- 3 topomax(j): topo. max along lat section. Defines the two major areas: uphill (before), downhill (after)
- 4 peak [0]: grid point imax where topomax(j)
- 5 valleys: local minimums: uphill valleys [1] and downhill valleys [-1]
- 6 Repeated along all meridional sections per mountain range (contiguous grid points above topo_{min})
- 7 Unique identification per mountain range

rangefaces: mountain range face diagnostics

(e.g. section lat. S 18.3865°, 3 km res.) rangefaces

2 uphill 1 uphill valley

0 peak

−1 downhill valley

_2 downhill

Result on:

- 3km resolution topography
- y-axis section
 - $topo_{min} = 400 m$

Slicing: regions following different criteria

- e.g. Andes mountain range following: lat. bands, orog. and range-face. Total pot. slices: $41 \times 13 \times 3 = 1599$
- e.g. CMIP5 ACCESS1.0 for: latitudinal band= $[S 34^{\circ}, S 32^{\circ}]$, height=[750. m, 1250. m] and 'downhill' range face: [-2.5, -0.5]

- **II** Final area $(A_{C1,C2,C3})$; acc. product of area of each criteria
- 2 weights (\mathcal{W}): fraction of slice area ($\mathcal{A}_{C1,C2,C3}$) covered by each grid point $\mathcal{A}_{C1,C2,C3}^g[k]$

$$\mathcal{W}[k] = \frac{\mathcal{A}_{C1,C2,C3}^g[k]}{\mathcal{A}_{C1,C2,C3}}, \qquad \qquad \mathcal{A}_{C1,C2,C3} = \sum_{k=1}^{N_{1,2,3}} \mathcal{A}_{C1,C2,C3}^g[k]$$

Slicing: description

Number of grid cells per slices: ACCESS 1.0 & IPSL-CM5A-LR
N grids per slice ACCESS1-0
N grids per slice IPSL-CM5A-LR

Number of grid cells per slice depend on model resolution:

- **ACCESS** 1.0: $1.875 \times 1.25^{\circ}$
- IPSL-CM5A-LR: 3.75 × 1.895°

Slicing: description (cont. ii)

Number of models with data per slice for precipitation and tasmin

Each slice with different models and ensemble size

Uncertainty of climate change signal

- For each slice, response to climate change (fut, 2040-2070 vs hist, 1960-1990) for: pr, tasmin, tasmax is computed. ESGF monthly data (28 models pr, 26 models tasmin/tasmax)
- Uncertainty of response is computed as in [Kendon et al., 2008, J. Climate]

 (after [Storch and Zwiers, 1999,])

- 2 significance at 5 % by two-tailed T-student:
 - \blacksquare equivalent T-student: $t_{equiv} = SNR\sqrt{rac{Nmod}{2}}$

3 finally, significance:
$$\begin{cases} t < t_{theo}(\gamma, 0.025) \\ t > t_{theo}(\gamma, 0.975) \end{cases}$$

Uncertainty of climate change signal (cont.)

- SNR and significance test computed from variances $(\sigma_{yrvar}^{hist/fut})$:
 - interanual variability of the ENS:

$$\frac{1}{N mod} \sum_{imod=1}^{N mod} (yrvar_{imod}^{hist/fut})$$

ENS spread of the interannual variability:

$$\sigma(yrvar_{imod}^{hist/fut})$$

ENS spread of the annual mean:

$$\sigma(yranmean_{imod}^{hist/fut})$$

ENS spread of the interannual anomalies:

$$\sigma(yrmeananom_{imod}^{hist/fut})$$

- Precpitation increase mostly East-tropical regions
- pr decrease everywhere else
- certainty and significance slice and variance dependency

'+': certain by |SNR| > 1

'□': T-student sig.

Zoomed example on slicing for pr: 'peak'

■ ENSmean minimum temperature response

- stronger increase at higher altitudes, 'peak' and 'east' areas
- no signal at high latitudes
- certainty and 5% significance slice and variance dependency

■ ENSmean maximum temperature response

- Stronger increase that tasmin
- Increase also at high latitudes
- Slight decrease in certainty and significance

Conclusions

- Analysis of climate change signal of CMIP5 by slices (latitude, orography and mountain side) over the Andes
- Objective definition of **coherent** spatial areas **no-interpolation**
- latitudinal, height and mountain side dependency of climate signal on precipitation
- Wider thermal response, stronger at higher altitudes
- Stronger response of tasmax
- Strong dependency of signal certainty and significance on slice and method estimation of uncertainty

Thank you for your attention !!

The Andes - South America's backbone for interdisciplinary studies

- Andes comprise a heterogeneous territory in which *climate variations affect socioeconomic activities and could endanger vulnerable communities*
- The Andes are a biodiversity hotspot hosting 10% of the world's plant species, and providing *critical ecosystem services* as water provision, soil protection, carbon storage
- Vulnerability of the Andean population is high and therefore *increasing knowledge of climate change is crucial to guide adaptation policies*

The Andes - South America's backbone for interdisciplinary studies

- Andes comprise a heterogeneous territory in which *climate variations affect socio-economic activities and could endanger vulnerable communities*
- The Andes are a biodiversity hotspot hosting 10% of the world's plant species, and providing *critical ecosystem services* as water provision, soil protection, carbon storage
- Vulnerability of the Andean population is high and therefore *increasing knowledge of climate change is crucial to guide adaptation policies*

ANDES are a gap! and an opportunity to CORDEX

→ linking with Andex community under the umbrella of GEWEX

Thank you!

carril@cima.fcen.uba.ar

