REEX ICRC-CORDEX 2019

International Conference On Regional Climate

D1: Third Pole Environment: high resolution simulation/reanalysis & its implication /application

Convection-permitting modeling over the Tibetan Plateau

Yanhong Gao*,

Fei Chen#,

Jianwei Xu &, Linhong Xiao &, Xia Li &, Yingsha Jiang &

*Fudan University

* National Center of Atmospheric Research

[&]Key Laboratory of Land-surface Process and Climate Change in Cold and Arid Regions, CAS

2019.10.17 Beijing

Research succession

Dynamical downscaling over the Tibet

Convention-permitting modeling over the Tibet

Information from IPCC ensembles

In the Tibet

Belymamical cookinstial integrevel enthearibiet

> WRF

Horizontal resolution 30km

33 years (1979-2011)

- •Optimal combination of parameterization
- Best initialization and boundary
- •Improved land surface model

(Gao et al., J. Clim. 2015a)

Better simulate contrast changes between northwestern and southeastern TP in P-E

(Gao et al., *J. Clim.* 2015b)

Consistent with other environmental changes

Add values and limitations in precipitation

The overestimation of precipitation in reanalysis is reduced by 35% in DDM, however still exists.

Gao et al., J. Clim. 2015a

CPS in the world

Bruintjes et al. 1994; Gaudet and Cotton 1998; Colle et al. 2000, 2005, 2008; Garvert et al. 2007; others...

CPS in the Tibet

> WRF

Horizontal resolution 28km nesting 4km

Nov 1st 2013-May 31st 2014

- > CAM shortwave scheme and longwave scheme (Collins et al. 2004)
- The WRF Single-Moment 6-class (WSM6)
- ➤ Kain–Fritsch convection scheme (Kain, 2004)
- ➤ Yonsei University PBL scheme (Hong and Pan 1996)
- Noah LSM (Chen and Dudhia 2001)

Precipitation biases averaged over stations

Distribution of accumulation precipitation biases compared to CMA station records

Topography differences between 4km grid cells and stations in the Brahmaputra Grand Canyon

Noah-MP simulated snow cover fraction

MODIS

Noah-MP driven by CMFD underestimates SCF

Taylor diagram of SCF simulations driven by multi precipitation datasets

Spatial distribution of snow cover fraction

a) MODIS
Noah-MP runs
driven by
precipitation of
b) CMFD
c) TRMM

e) DDM

d) CMORPH

f) CPS

Summary

- Five precipitation datasets show great uncertainties in the TP compared to CMA station records.
- Noah-MP run driven by the merged precipitation datasets substantially underestimates snow cover fraction in the central and eastern TP, in particularly, in the Brahmaputra Grand Canyon.
- Simulated snow cover fraction driven by DDM and CFS precipitation agree MODIS snow cover fraction much better than the three merged precipitation driven runs.