

Asian Summer Monsoon Changes at Different Levels of Global Warming: A multi-RCM study

Donghyun Lee and Seung-Ki Min

Pohang University of Science and Technology (POSTECH)

*Contributions from JB Ahn (PNU), D-H Cha (UNIST), E-C Jang & M-S Seo (KNU), J-U Kim (NIMS)

Backgrounds

- Paris Climate Agreement (2015)
- Rising public interest in global warming at specific levels (1.5 and 2.0°C)
- Most studies based on global climate simulations

Major questions

- Understanding Asian summer precipitation change at specific warming levels (1.5, 2.0, 2.5, 3.0°C)
- Examine the potential uncertainty in multi-RCM future projection

Data

INSTITUTIONS.	Regional Climate Model	Global Climate Model (Boundary Forcing)		
		GFDL-ESM2M	HadGEM2-AO	MPI-ESM-LR
NIMS	HadGEM3-RA		•	•
KNU	RegCM		•	
PNU	WRF	•		•
UNIST	MM5		•	•
POSTECH	CCLM		•	•

- Regional Climate Model follows CORDEX-EAS (25km) Phase II experimental domain
- Data details are described on : http://cordex-ea.climate.go.kr

Method I

- Global Warming at Specific Levels
- (1) Based on IPCC SR (2018), we assume "global warming in recent decade (2006-2015) are +0.87 warmer than pre-industrial conditions (relative global warming).
- (2) We select a decade based on boundary GCM data under RCP85, when relative global warming reaches +1.5, +2.0, +2.5, +3.0°C from pre-industrial conditions.

e.g) Surface Air Temperature (TAS, 2m) at +1.5 and +2.0 warming

Method II

• Light, Moderate, Heavy, Extreme precipitation in summer season (JJA)

Compute daily precipitation (PR) percentile (%ile) values at 35%ile, 90%ile, 99%ile from summer days of climate model simulations

*APHRODTIE V1901 0.25 deg (2006-2015)

Method III

Intensity

Difference in precipitation group (light, moderate, heavy, extremes) between warming worlds (1.5, 2.0, 2.5, 3.0) and historical (2006-2015) periods.

$$\Delta Intensity = PR_{warming\ worlds} - PR_{histoircal}$$

PR: Light, Moderate, Heavy, Extreme precipitation

Frequency

Relative change in precipitation group (light, moderate, heavy, extremes) at warming worlds (1.5, 2.0, 2.5, 3.0), based on historical (2006-2015) precipitation frequencies (unit is %).

$$\Delta Frequency = \frac{\left(Days_{warming\ worlds} - Days_{historical}\right)}{Days_{historical}} \times 100$$

Days: PR threshold uses historical periods (2006-2015)

Uncertainty (Future projection variance)

Relative contributions of boundary GCM forcing (BGF) and RCM itself (RCM) are assumed:

$$BGF_VAR = Variance\ of\ [E(RCMs\ of\ GCM1), E(RCMs\ of\ GCM2)\ ...]$$

 $RCM_VAR = Variance\ of\ [E(RCM1\ of\ GCMs), E(RCM2\ of\ GCMs)\ ...]$
 $TOTAL_VAR = BGF_VAR + RCM_VAR$

Uncertainty Example

Extreme case, +1.5°C, EAS, intensity

1 Calculate each RCMs projection

Concept is similar to Deque et al. (2007), except for the "missing data reconstruction" and considering covariance ⁶

HIST (+0.87 degC in OBS, 2006-2015)

- ❖ In general, RCMs overestimate precipitation.
- ❖ Multi-RCM have large uncertainty ranges over SAS > EAS

Minimum

Result

• Extreme precipitation change

- **Extreme precipitation intensity and frequency gradually increases**
- ❖ Future projection uncertainties are larger for SAS, than EAS
- ❖ Intensity: BGF > RCM, Frequency: RCM > BGF

Heavy precipitation change

Blue line: RCM-MME

Grey dots: BGF-MME

- ❖ In general, heavy precipitation intensity and frequency increases
- * Relatively larger contributions from BGF to projection uncertainties

• Moderate precipitation change

Blue line: RCM-MME

Grey dots: BGF-MME

Frequency (%)

- ❖ Moderate precipitation frequency over SAS decrease gradually
- ❖ Relatively larger contributions from BGF to projection uncertainties

• Light precipitation change

Blue line: RCM-MME

Grey dots: BGF-MME

- ❖ Light precipitation weakened but more frequently happen in SAS
- ❖ Light precipitation frequency changes are opposite to moderate cases
- ❖ Larger total uncertainty over SAS, and BGF (RCM) contributes more SAS (EAS).

Summary

1 Intensity

- ✓ Extreme and heavy precipitation intensity increase (both GCM & RCM projections)
- ✓ Additional half a degree warming make more intensified extreme events.

2 Frequency

- ✓ Extreme precipitation frequency increase (both GCM & RCM projection)
- ✓ Additional half a degree warming make more frequent extreme events.

③ Uncertainty (Future projection variance)

- ✓ In most cases, South Asia future projection have more uncertainty than East Asia
- ✓ For moderate and heavy precipitation, boundary GCM forcing (BGF) have larger contributions than RCMs.

Thank you for listening Q&A

donhyunlee@postech.ac.kr

RCM RCM(HG2-MPI) Maximum RCM-MME Non-change (0) relative to HIST

Projection difference caused by GCM boundary forcing (HG2 - MPI)

Supplementary

+1.5°C Worlds (around 2030s under RCP85)

- ❖ In general, GCM & RCM have more uncertainties over SAS regions (pos/neg)
- Heavy and extreme precipitation strengthened over EAS regions
- RCMs project different intensities, depending on type of boundary forcing

RCM RCM-MME RCM-MME Non-change (0) relative to HIST

Projection difference caused by GCM boundary forcing

(HG2 - MPI)

+2.0°C Worlds (around 2040s under RCP85)

Supplementary

- Except for extreme, RCMs' projection are similar to boundary forcing GCM
- ❖ Boundary forcing impacts on projection is much larger for SAS than EAS.

RCM RCM(HG2-MPI) **Maximum RCM-MME** Non-change (0) **Minimum** relative to HIST

Projection difference caused by GCM boundary forcing (HG2 - MPI)

Supplementary

+2.5°C Worlds (around 2050s under RCP85)

- ❖ In general, weakened or not much changes for light and moderate PR in MME sense
- GCMs and RCMs agree on intensification of heavy and extreme precipitation as global temperatures rises

RCM RCM(HG2-MPI) Maximum RCM-MME Non-change (0) relative to HIST

Projection difference caused by GCM boundary forcing (HG2 - MPI)

Supplementary

+3.0°C Worlds (around 2060s-2070s under RCP85)

- ❖ The most sever extreme intensities are projected by GCMs and RCMs in MME sense
- SNU-MM5 are much sensitive to boundary GCM, while CCLM are less sensitive to boundary GCM in most cases.