European climate change at different global warming levels as derived from a large ensemble of EURO-CORDEX simulations

Erik Kjellström, Grigory Nikulin and Gustav Strandberg Rossby Centre, SMHI

with acknowledgements to the EURO-CORDEX team!

ICRC-CORDEX 2019, 17 October 2019, Beijing

Aim and questions

To characterize European climate change at a number of different global warming levels (1.5, 2.0, 2.5 and 3.0°C) in a large set of RCM simulations at 12.5 km grid spacing

- § At which of the warming levels can we detect statistically significant climate change for different variables and climate indices?
- § To what extent are changes at the different warming levels different?
- How are different sources of uncertainty (GCM, RCM, natural variability) influencing the CC signal?

RCM simulations

31 EURO-CORDEX simulations with 7 RCMs under RCP8.5

RCM	CCLM	RACMO	RCA	HIRHAM	REMO	REG	WRF	ALADIN
					2009/	CM4-6	361H	
GCM					2015			
ECEARTHr12								
ECEARTHr1								
ECEARTHr3								
MPIr1								
MPIr2								
HadGEMr1								
CNRMr1								
IPSLr1								
NORESMr1								
CANESMr1								
MIROCr1								

Kjellström et al., 2018, Earth Syst. Dynam., 9, 459-478, https://doi.org/10.5194/esd-9-459-2018.

When do we reach 2(1.5)°C warming?

Global annual mean 2m-temperature

30-year running mean anomaly w.r.t. 1861-1890 in one simulation by one global climate model

EURO-CORDEX ensemble and analysis

Ensemble mean near-surface temperature change (DJF)

From observations (www.smhi.se): DJF mean temperature 1971-2000 as an average for Sweden is 1.1°C above that in 1861-1890

Ensemble mean climate change (DJF)

31 CORDEX EUR-11 sim. | DJF | rcp85 | Hatching: AGR 25 sim. (/) & SNR > 1 (\)

80% of the models AGRee on sign of change

AGR & SNR (mean / stddev) > 1

Temperature climate (DJF)

- T increases most significant in the northeast
- Minimum temperatures increase more than maximum (decreasing variability)
- Reduced diurnal temperature range

Frost days

- Frost days
 decreasing in all
 areas where
 there are frost
 days in CTL
- Winter changes relatively small in the coldest regions (N. Scand. and the Alpine region)
- Notable changes over the ocean

Some precipitation indices (JJA)

Number of wet days decrease in the south and over the Atlantic

CTL: 1971-2000 40 32 24 day

1.5°C - CTL

2.0°C - CTL

2.0°C - 1.5°C

r1mm

Precipitation increase on the wet days

20 mm/day

mm/day

24 CORDEX EUR-11 sim. | JJA | rcp85 | Hatching: 19 sim. (/) & SNR > 1 (\)

1.6

1.2

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 mm/day

Wetter in the north, drier in the south and west.

-0.8

Wet and dry periods (JJA)

 Drier conditions in the south and in the west

 Max. five-day precipitation increases in central and northern Europe

Changes over time (precip JJA)

Some regions show little agreement even at +3°C

Same response in RCMs (and GCMs)?

Same response in RCMs (and GCMs)?

Conclusions

- Already at GWL1.5 many changes are significant while at GWL2 and higher GWLs changes get stronger and more robust
- Significant differences are found between variables/indices for different GWLs
- Spread in results is related to choice of GCM, RCM and ensemble member and varies with variable
- Generally, there is a large impact of large-scale circulation given by GCMs and natural variability
- The RCMs can strongly modify the climate change signal given by the GCM

Results for an earlier version based on a subset of the simulations can be found in: Kjellström et al., 2018. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models, *Earth Syst. Dynam.*, 9, 459-478, https://doi.org/10.5194/esd-9-459-2018.