European climate change at different global warming levels as derived from a large ensemble of EURO-CORDEX simulations

Erik Kjellström, Grigory Nikulin and Gustav Strandberg
Rossby Centre, SMHI

with acknowledgements to the EURO-CORDEX team!

ICRC-CORDEX 2019, 17 October 2019, Beijing
Aim and questions

To characterize European climate change at a number of different global warming levels (1.5, 2.0, 2.5 and 3.0°C) in a large set of RCM simulations at 12.5 km grid spacing

- At which of the warming levels can we detect statistically significant climate change for different variables and climate indices?

- To what extent are changes at the different warming levels different?

- How are different sources of uncertainty (GCM, RCM, natural variability) influencing the CC signal?
RCM simulations

31 EURO-CORDEX simulations with 7 RCMs under RCP8.5

<table>
<thead>
<tr>
<th>GCM</th>
<th>CCLM</th>
<th>RACMO</th>
<th>RCA</th>
<th>HIRHAM</th>
<th>REMO 2009/2015</th>
<th>REG CM4-6</th>
<th>WRF 361H</th>
<th>ALADIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEARTHR12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEARTHR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEARTHR3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPIr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPIr2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HadGEMr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNRMr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPSLr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORESMr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANESMr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIROCr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More recent simulations
When do we reach 2(1.5)°C warming?

Global annual mean 2m-temperature

30-year running mean anomaly w.r.t. 1861-1890 in one simulation by one global climate model

"Preindustrial" conditions (1861-1890)

1.5°C warming (2033-2062)

2°C warming (2046-2075)
Ensemble mean near-surface temperature change (DJF)

EURO-CORDEX ensemble and analysis

CONTROL 1971-2000

+1.5°C minus CONTROL

+2.0°C minus CONTROL

+2.0°C minus +1.5°C

From observations (www.smhi.se): DJF mean temperature 1971-2000 as an average for Sweden is 1.1°C above that in 1861-1890
Ensemble mean climate change (DJF)

80% of the models agree on sign of change

AGR & SNR (mean / stddev) > 1
Temperature climate (DJF)

- T increases most significant in the northeast
- Minimum temperatures increase more than maximum (decreasing variability)
- Reduced diurnal temperature range
Frost days

- Frost days decreasing in all areas where there are frost days in CTL
- Winter changes relatively small in the coldest regions (N. Scand. and the Alpine region)
- Notable changes over the ocean
Some precipitation indices (JJA)

- Number of wet days decrease in the south and over the Atlantic
- Precipitation increase on the wet days
- Wetter in the north, drier in the south and west.
Wet and dry periods (JJA)

- Drier conditions in the south and in the west

- Max. five-day precipitation increases in central and northern Europe
Changes over time (precip JJA)

- Increasing agreement with GWL in most regions
- Some regions show little agreement even at +3°C
Same response in RCMs (and GCMs)?

- HadGEM2 show decreasing precipitation in most of Europe
- RCMs modifies the change significantly
Same response in RCMs (and GCMs)?

- HadGEM2 shows increasing precipitation in most of Europe
- RCMs add detail (e.g. the Scandinavian mountains, the Alps)
- One RCM (WRF) show large differences in the large-scale response
Conclusions

- Already at GWL1.5 many changes are significant while at GWL2 and higher GWLs changes get stronger and more robust

- Significant differences are found between variables/indices for different GWLs

- Spread in results is related to choice of GCM, RCM and ensemble member and varies with variable

- Generally, there is a large impact of large-scale circulation given by GCMs and natural variability

- The RCMs can strongly modify the climate change signal given by the GCM

Results for an earlier version based on a subset of the simulations can be found in: Kjellström et al., 2018. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models, *Earth Syst. Dynam.*, 9, 459-478, https://doi.org/10.5194/esd-9-459-2018.