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Motivation of the session

Downscaling is a key aspect in most studies of regional climate change
and associated consequences, as it reduces the information gap between
coarse-grained global climate model output and the local scales at which
climate impacts manifest. While the dynamical downscaling approaches
are primarily based on the physical understanding of processes and
phenomena, statistical downscaling techniques focus more on reproducing
the statistical properties of particular climate variables or phenomena
such as the mean, variability and extremes. The two different approaches
have different strengths and weaknesses, which implies that they
complement each other. They can also be combined to provide a more
powerful framework for studying the regional climate. For instance,
empirical-statistical downscaling can be used to identify the dependency
between large and small scales simulated by regional climate models.
Outputs from regional climate models can also be used to train statistical
models to test the methods such as stationarity. The two approaches can
also be combined to emulate regional climate models driven by large
ensembles of global climate models.
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Aims of the session

- Bring researchers from the RCM and ESD communities together to
discuss, interact, and share findings and ideas on how to combine both
methods to produce more reliable and more robust climate projections.

- Establish guidelines on how to merge ESD and RCM results, eventually
suggest a protocol or a road map on how to do this.

- Better integrate these efforts into existing CORDEX activities, especially,
through FPS

- Communicate the outcomes of the session.
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Motivating questions

- Can we validate and expand RCM results to cover the full multi-
model ensemble of GCMs using ESD and hybrid methods?

- Can we use ESD to study how the physical connections are
captured? e.g. hon-convective versus convective RCMs?

- Can we build a consistent framework to be used in CORDEX

FPS as a protocol?
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RCMs & ESD

e RCMs source = primitive physical equations +
parameterisation (“tuning”) + bias adjustment (“tuning”) -
empirical data for evaluation.

e ESD source = empirical equations + statistical theory.
e Empirical data for both training & evaluation
e Stationarity assumptions for both?

e ESD is a useful too for understanding RCMs (“pseudo-
reality”)

e ESD & RCMs: different & independent strengths.



1. Training and simulation framework 2. Ensemble of opportunities

. . . Emission Scen.
Reanalysis and/or Historical (e.g SRES, RCPs)
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Extracting a subset of GCMs prior to
downscaling (Bootstrapping over Poland)




Sampling a subset of GCMs prior to
downscaling (Bootstrapping over Poland)
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ESD vs RCM ?




How do we compare ESD with DD?

- ESD downscaled on
stations (red points),

- BC interpolated on
stations (large
circles),

- Compute averages
across all sites from
common sets of
ensemble simulations.




RObUSt dOWhS(:a| i ng (e.g. Temp @Poland)

RCM (dashed blue) & ESD (dashed red) make use of independent
iInformation, but the downscaled results are similar (e.g. RCP4.5)
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RObUSt dOWhS(:a| i ng (e.g. Temp @Poland)
RCM (dashed blue) & ESD (dashed red) make use of independent

Information, but the downscaled results are similar (e.g. RCP4.5). |
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Robust downscaling (e.g. Poland)

Downscaled temperature change [ ° C ]
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Using RCM to test ESD

- ESD between BC-GCM & RCM (120 years of RCM

T2m VP2m prw
olr i data.)
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Calibration experiment I:

Tzn?._.: il b ¢ Pl Py Calibration experiment II:
. 12 predictands . Top predictands only (2-3)
. 10 set-up options . Detrending options
d ition: " g .
T + 5 different calibration periods » Moving window: 456 calibration periods
— . 4 seasons, . 600 models in total . ~30.000 esd-models in total
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1. Provide more robust end results;

2. novel results regarding statistical model stationarity under drastic climate
change:
« GCM predictor variable
« esd-configuration choices




River run-off
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Dipper population

Affected by = Ropas
. - RCP8.5
Wlnter = | -@- observed
temperature.
Poisson -
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Statistics are remarkably well predictable

Temperature statistics Precipitation statistics
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“Climate” = “Weather Statistics”



Weather Generator - Principle

Statistical models usually consist of an empirical relationship for which a set
of parameters are estimated so that it best represents the patterns found in
the data + stochastic process

Mathematical formulation

Local-Scale = f(Geography + Large-Scale) + Noise

Y = f(G,X) +¢

e Y is the predictand (Quantification of the local scale patterns)
e X is the predictor (Quantification of the large or regional scale patterns)

A

® € is a Noise term (Stochastic process)




Main message

- Empirical-statistical downscaling (ESD) can be used to estimate
change in any variable that is affected by large-scale conditions.

- For climate change projections, downscale “climate” (parameters/
aggregated statistics) rather than “weather” (dally fields/data).

- ESD is suitable for probabilistic information and large multi-model
ensembles.



“Climate” = “weather statistics”
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Downscaling statistical parameters

Parameters of pdf
[mean,sd, autocorrelation, ...]

2050

Influenced by physical
conditions

More predictable than
individual outcome
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RCM ~ “weather-approach” - ESD ~ "climate-approach”



Downscaling likelihood of heavy rain

Pr(X>x) = f _exH

Wet day frequency
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Physical consistency?

Strictly not in either RCM nor ESD.

RCM have different energy and mass fluxes than
the driving GCM.

ESD: PCA and EOF based methods can
conserve inter-variable and spatial covariance.



Useful climate information can
only be synthesised from large
multi-model GCM ensembles.
We need to move away from

W&I results




Multi-model ensembles

Problem: nota @

statistical
sample




Non-deterministic natural variations

Ensembles!

10-year-average in % wrt 1961-90
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Distillation of robust information

Multiple independent

INFORMATIQON
)

sources of information.

N

STATISTICS

ESD & Statistics apply

constraints and makes use
of redundancies.
The range of uncertaintyis ¥ 'y N

IIIIIIIIII

also useful information
about sensitivities.



Examples of ESD in Norway

e ESD applied to CMIP5 multi-model ensembles

e Common EOFs (anomalies from reanalysis & GCM):
hybrid MOS/PerfectProg. >

e Predictand & predictor detrended for calibration, but trend
IS Included In evaluation and projection

e PCAto represent predictand.

e Cross-validation

e Predictand is seasonally aggregated statistics/parameters
for pdfs.

e (Gridding of downscaled statistics.

e Based on the esd-package:
o github.com/metno/esd



http://github.com/metno/esd

Observations + model

Gridded results e t)
Complicated objects

Compression of data volume

results

Downscaled mean winter temperature for 2050 - 2050 following RCP4.5 based on 108 model runs
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Wet-day frequency (fraction) o ISR >
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Duration of heat waves

Mean jja temperature & mean length of intervals above 20 C
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Storm tracks

Storm climate Is sensitive to large-scale
environment
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