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How do water resource managers approach this?
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Is Downscaling Legitimate?

• Missing features in climate 
models (e.g. mountains)

• Disparity between downscaled 
projections

• Some consistent features arise 
from physics!

• Movement to include more 
physics!

• And be aware of how this work 
may be used…



Physics to the Rescue ?

• Convection permitting/resolving regional climate models
• Millions (and millions) of CPU hours
• Little (or no) ability to assess uncertainty



The Conceptual Divide in Downscaling

Physics Statistics
The only way to get 
the “correct” answer

The only way to get 
a relevant answer



Regional Climate Downscaling Techniques

• Simple Bias Correction Statistical Techniques
– LOCA, BCSD, QM

• Circulation conditioned statistical techniques
– GARD (bringing physics to statistical methods)

• Simple Atmospheric Model
– ICAR (with statistical corrections applied internally)

• Full Atmospheric Model
– WRF 4km (only PGW feasible)
– WRF 50km (or 25 or limited 12km)



Yakima River Basin

• East side of Cascades
• 6 major reservoirs
• Agriculture dependent on water



ICAR
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ICAR: Intermediate Complexity Atmospheric Research model
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Identify the key physics for a simple model
GOAL: >90% of the information <1% of the cost



ICAR: Intermediate Complexity Atmospheric Research model



ICAR Mar CCSM (CMIP5)

Core physics with online corrections

• ICAR represents 90% of the physics, but 
the remaining 10% can be problematic. 

• ICAR has biases, e.g. too much 
precipitation on mountain peaks, too little 
in the valleys

• Known biases can be corrected to keep 
the rest of the physics consistent.  

• Apply a climatological bias correction to 
precipitation

• Improves LSM snowpack, and thus 
snow-albedo feedback representation

Temperature
Change [°C]



A Large Ensemble

ccsm4



WRF Annual Climate Change signal PGW – Control
Precipitation 
Change (mm / yr)

Pseudo Global Warming change 
signal (PGW)

30-yr mean change in water 
vapor, temperature, sea level 
pressure, U and V averaged 
across 19 GCMs

13 year 4km CONUS WRF 
simulation

ERA-I (current 13 years)
+PGW (future 13 years)

WRF 3.7.1
Convection permitting, RRTMG, 
Thompson, YSU, Noah-MP



ENSO SSTs in GCMs and Obs
CanESM2

Observed
ENSO - Precipitation

Correlation

0.3-0.3 0

WRF 4km CONUS

Evaluation - ENSO



Summary

• Working with water managers to create and 
understand possible climate projections.

• Combining statistical corrections with 
simplified physics may provide a more 
robust climate change representation. 

• Methods connected to atmospheric 
circulation provide different answers than 
more traditional approaches.

• Teleconnections may provide a useful 
historical test for climate applications.



ICAR Dynamics

m2 = N 2 − σ 2

σ 2 − f 2
(k2 + l2),η̂(k, l) = ĥeimz,

ŵ(k, l) = iσ η̂û(k, l) = −m (σk − il f ) i η̂

k2 + l2
v̂(k, l) = −m(σ l + ik f )i η̂

k2 + l2
,

σ = Uk + V l

Topography

WRF Vertical WindsSWM Vertical WindsICAR



En-GARD: Ensemble Generalized 
Analog Regression Downscaling

Observed
Precipitation

“Observed”
Atmosphere

Analog 
Training Period

X C + e = Y
X = Reanalysis variables
C = Regression coefficients
e = error term
Y = Observed variable (e.g. precipitation)

Dataset
Add “e” back to quantify uncertainty. 

Use a stochastic process that maintains spatial-
temporal correlation of residuals

Residuals of regression,
Spread in analogs, …

Modeled 
Atmosphere Time

Gutmann et al (in prep)
Clark and Hay (2004)
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Spread in Mean Annual Precipitation Change (2080s – 1980s) for the 
Yakima (WA) and Upper Colorado (CO) basins.

Full Ensemble

GCMs

RCPs

Downscaling
Methods

Washington State

• Variations between GCMS 
are similar to variations 
between downscaling 
methods

Colorado River Basin



Simple Statistical Downscaling

• Relies on stationary statistical 
relationships

• Computationally cheap
GCM
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