The best of both worlds: Processed-based and data-driven regional climate.

Ethan Gutmann,

Research Applications Laboratory

Lulin Xue, Trude Eidhammer, Joseph Hamman, Martyn Clark, Jeffrey Arnold, Ken Nowak, Roy Rasmussen

October 17, 2019

How do water resource managers approach this?

NCAR UCAR

Revealing and reducing uncertainties

NCAR UCAR

Is Downscaling Legitimate?

- Missing features in climate models (e.g. mountains)
- Disparity between downscaled projections
- Some consistent features arise from physics!
- Movement to include more physics!
- And be aware of how this work may be used…

Physics to the Rescue?

- Convection permitting/resolving regional climate models
- Millions (and millions) of CPU hours
- Little (or no) ability to assess uncertainty

The Conceptual Divide in Downscaling

Regional Climate Downscaling Techniques

- Simple Bias Correction Statistical Techniques
 - LOCA, BCSD, QM
- Circulation conditioned statistical techniques
 - GARD (bringing physics to statistical methods)
- Simple Atmospheric Model
 - ICAR (with statistical corrections applied internally)
- Full Atmospheric Model
 - WRF 4km (only PGW feasible)
 - WRF 50km (or 25 or limited 12km)

Yakima River Basin

- East side of Cascades
- 6 major reservoirs
- Agriculture dependent on water

ICAR: Intermediate Complexity Atmospheric Research model

Identify the key physics for a simple model GOAL: >90% of the information <1% of the cost

UCAR

ICAR: Intermediate Complexity Atmospheric Research model

Core physics with online corrections

- ICAR represents 90% of the physics, but the remaining 10% can be problematic.
- ICAR has biases, e.g. too much precipitation on mountain peaks, too little in the valleys
- Known biases can be corrected to keep the rest of the physics consistent.
- Apply a climatological bias correction to precipitation
- Improves LSM snowpack, and thus snow-albedo feedback representation

A Large Ensemble

Change in Precipitation Yakima River Basin (2080s-1980s)

WRF Annual Climate Change signal PGW – Control

Precipitation Change (mm / yr)

Pseudo Global Warming change signal (PGW)

30-yr mean change in water vapor, temperature, sea level pressure, U and V averaged across 19 GCMs

13 year 4km CONUS WRF simulation

ERA-I (current 13 years) +PGW (future 13 years)

WRF 3.7.1 Convection permitting, RRTMG, Thompson, YSU, Noah-MP

NCAR UCAR

Evaluation - ENSO

Observed ENSO - Precipitation

Summary

- Working with water managers to create and understand possible climate projections.
- Combining statistical corrections with simplified physics may provide a more robust climate change representation.
- Methods connected to atmospheric circulation provide different answers than more traditional approaches.
- Teleconnections may provide a useful historical test for climate applications.

ICAR Dynamics

$$\hat{u}(k,l) = \frac{-m(\sigma k - ilf)i\hat{\eta}}{k^2 + l^2} \qquad \hat{v}(k,l) = \frac{-m(\sigma l + ikf)i\hat{\eta}}{k^2 + l^2}, \qquad \hat{w}(k,l) = i\sigma \hat{\eta}$$

$$\hat{v}(k,l) = \frac{-m(\sigma l + ikf)i\hat{\eta}}{k^2 + l^2},$$

$$\hat{w}(k,l) = i\sigma \,\hat{\eta}$$

$$\hat{\eta}(k,l) = \hat{h}e^{imz},$$

$$\hat{\eta}(k,l) = \hat{h}e^{imz}, \qquad m^2 = \frac{N^2 - \sigma^2}{\sigma^2 - f^2}(k^2 + l^2), \qquad \sigma = Uk + Vl$$

$$\sigma = Uk + Vl$$

NCAR

UCAR

En-GARD: Ensemble Generalized Analog Regression Downscaling

Washington State

Spread in Mean Annual Precipitation Change (2080s – 1980s) for the Yakima (WA) and Upper Colorado (CO) basins.

Colorado River Basin

 Variations between GCMS are similar to variations between downscaling methods

Simple Statistical Downscaling

